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SUMMARY

An approximate method for the calculation of the compressible lam-

inar boundary layer with heat transfer and arbitrary pressure gradient;

based on Thwaites' correlation concept; is presented. The method re-

sults from the application of Stewartson's transformation to Prandtl's

equations; which yields a nonlinear set of two first-order differential

equations. These equations are then expressed in terms of dimensionless

parameters related to the wall shear; the surface heat transfer; and the

transformed free-stream velocity. Thwaites' concept of the unique inter-

dependence of these parameters is assumed. The evaluation of these

quantities is then carried out by utilizing exact solutions recently
obtained.

With the resulting relations; methods are derived for the calcula-

tion of the two-dimensional and axially symmetric laminar boundary layer

with an arbitrary free-stream velocity distribution; Mach number; and

surface temperature.

The combined effect of heat transfer and pressure gradient is dem-

onstrated by applying the method to calculate the characteristics of

the boundary layer on thin supersonic surfaces and in a highly cooled;

convergent-divergent; axially symmetric rocket nozzle.

INTRODUCTION I

In recent years; with the advent of laminar airfoils and with the

observation of laminar boundary layers at Reynolds numbers as high as

S0×lO 6 (ref. 2); the ability to reliably estimate viscous flow and heat-

transfer effects for a laminar boundary layer has become increasingly

iThe principal developments of this paper_ which is part of the

doctoral dissertation of the senior author (ref. i)_ were carried out

under the stimulus and guidance of Professor Luigi Crocco and the spon-

sorship of the Daniel and Florence Guggenheim Foundation. The final

analysis and the computations were completed at the NACA Lewis laboratory.
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important. Moreover_ with high-altitude flight becoming more common 3

the subsequent lower Reynolds numbers encountered should more frequently

produce a laminar boundary layer. Stability calculations based on the

theory of Lees and Lin (ref. 3) have also emphasized the possibilities

of maintaining a laminar boundary layer through cooling of aerodynamic

surfaces. The effect of favorable pressure gradients in increasing the

stability of laminar boundary layers may also make solutions to the lam-

inar problem applicable to the design of nozzles and turbine blades.

Solution of the laminar-boundary-layer equations which include ef-

fects of compressibility_ pressure gradient_ and heat transfer have been

quite limited in number. Of the exact so!utions_ most have restrictions

of range or application 3 or both. The solutions of references 4 and 5

are restricted to zero pressure gradient 3 while those of reference 6

allow small pressure gradients. The developments of reference 7 are

restricted to small heat transfer and low Mach number. Solutions ob-

tained by assuming that fluid properties are constant or that the Mach

number is essentially zero are obtained in references 8 to i0. Those

solutions of references ii and IZ that are for a Prandtl number of unity

are not restricted in range of compressibility3 pressure gradient_ or

heat transfer. However 3 they apply to specific types of free-stream

velocity distribution which are inappropriate for general practical

problems.

In 192i, von K_rm_n (ref. 13) recognized that to solve the skin-

friction problem it was not necessary to have the exact and complicated

solution_ but that it would be quite satisfactory to evaluate average

quantities across the layer if they could be related to the surface

values. The concepts of displacement and momentum thicknesses were in-

troduced_ thus considerably simplifying the mathematics of the problem.

With this integral method_ if the form of the velocity profile is re-

lated to a single parameterj a method of calculating the boundary layer

is obtained. Pohlhausen (ref. 14) carried out this method by postulat-

ing a quartic velocity profile depending upon the local pressure gra-
dient. A number of investigators have extended Pohlhausen's method to

compressible flows over insulated surfaces.

With the presence of heat transfer at the surface 3 the compressible

problem becomes more complex. Ka!ikb_man (ref. 15) defined certain heat-

flow quantities analogous to the displacement and momentum thicknesses

and_ in a manner similar to Pohlhausen's_ developed a complex iterat_ve

procedure for the solution of the _eneral problem. More recently_ ref-

erences 16 to 19 have further developed this technique. The preceding

methods are tedious_since they require a solution of at least one or-

dinary differential equation for any particular problem.

Thwaites' method (ref. 20) does not require the solution of ordi-

nary differential equations. In that formulation_ it is suggested that
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the basic goal of an integral approach might be achieved if the problem

is considered as that of relating the wall shear_ its normal derivative

at the wall_ and the form factor (ratio of displacement thickness) to

one another without specifying a type of profile. To this end_ nondi-

mensional forms of these quantities were defined and were evaluated by

examining exact solutions for the incompressible laminar boundary layer.

It developed that a nearly universal relation existed between these

quantities Tor favorable pressure gradients and_ for adverse pressure

gradients_ Thwaites selected a single representative relation. A unique

correlation was chosen which reduced the solution of an incompressible

problem to the evaluation of a single integral. Z

Rott and Crabtree (ref. 22) recognized that, in the absence of heat

transfer and with a Prandtl number of unity_ the Y_lllngworth-Stewartson

correlation between compressible and incompressible boundary-layer solu-

tions (ref. 23) could be used to extend Thwaites' method to include ef-

fects of compressibility.

With the presence of heat transfer the application of Stewartson's

transformation does not correlate a given compressible problem to an

equivalent incompressible one. Thus_ the universal relation previously

described isnot adequate. Unfortunately_ there is little possibility

of establishing a family of "universal" relations with 3 for example_ the

wall temperature as the distinguishing parameter_ since a variety of

exact solutions to this problem are not available. However_ one such

set of relations may be obtained from the solutions of references Ii and

12.

In the present paper_ after formulation of a nonlinear system of two

first-order differential equations (with the major restriction being a

linear viscosity la_)_ methods of solution are developed depending on

Thwaites' concept of universal functions. The functions used for this

purpose are evaluated from the solutions of reference 12 only.

BOUNDARY-LAYEREQUATIONS

The equations of the steady 3 two-dimensional compressible laminar

boundary layer for perfect fluids are

2Other approaches_ such as that of Young and Winterbottom (ref. 21)_

have resulted in expressions for the momentum thickness similar to that

of Thwaites. In that analysis_ however_ the derivation was a modifica-

tion of the Pokl_ausen technique. The application of a correlation con-

cept was _ot proposed.
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Continuity:

Moment urn:

(p_) +_ (pv)= o

5-_=o

(_)

Energy:

_u_ + pv_ = u + _7 + _ (3)

All symbols are defined in appendix A.

The viscosity law to be assumed is

_0 to

Equation (4) is of the form taken by Chapman and Rubesin (ref. 5); except

that the reference conditions (_0,to! are free-stream stagnation values,

since_ in the case of pressure gradient 3 the local "external" values are

not constant along the flow. The constant k is used to match the vis-

cosity with the Sutherland value at a desired location. If this loca-

tion is assumed to be the surface, the result is

where

tI_w + ksu t_t_k = + _sul
(s)

ksu = Sutherland's constant = 216 ° R (for air)

Stewartson's transformation. - By using the following definitions

of the stream function:

u)_Y = _0

= _ P....X
_x PO

(_)

O_
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a slight modification of Stewartson's transformation (ref. ZS) may be

written

ae Pe dx1

dX= k_
ao PO

p ae

dY = PO ao dy

(7)

The transformed coordinates are now represented by upper-case letters

(X, Y), and the subscript e refers to local conditions at the outer

edge of the boundary layer (external) where the flow is assumed to be

isentropic. The subscript 0 refers to free-stream stagnation values.

Applying equations (4) to (7) to the boundary-layer equations (i)

to (3) and assuming that Pr and Cp are constant (but not yet requir-

ing that Pr = i) result in the following system:

_× + vy : o (s)

UU X + VUy = UeUex(I + S) + _oUyy

US X + VSy = VoI_YY

(9)

i - Pr -T- u 2 (io)

where the enthalpy term S is defined for convenience as

h s
s ----- i (il)

ho

where hs is the local stagnation enthalpy_ and where the stream func-

tion has been replaced by the transformed velocities (U, V) through the

relations

(lZ)

The resulting relation between the transformed and physical longitudinal

a0
velocities is U =-- u.

a e
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The boundary conditions applicable to the system (8), (9), and (iO)

for a specified wall temperature are

u(x,o) = o

v(x,o) = o

s(x,o) -- Sw(X)

liraS = 0

lira U = Ue(X )

(13)

Integral equations. - An alternate form of the momentum equation

_y be obtained by subtracting the momentum equation (9) from the prod-

uct of the continuity equation (8) and the quantity (Ue U). This
results in

_(U e - U)_X + EV(Ue U]]y + Uex(Ue- U ) + UeUexS--- VoUyy (14)

If equation (i¢) is integrated with respect to Y between the limits

Y = 0 and Y --f_ where A is a constant distance norm_l to the sur-

face sufficiently large that the conditions S = 0 and U = Ue can

both be satisfied_ there results

d (ClUe 2) + UeUex(5_ + _) = _o(Uy)y= 0 (15)

oa
_9

where the transformed momentum thickness 8i; the transformed displacement
thickness 5*

i; a_d the enthalpy thickness @; are defined as

8i _ U-_ i - dY

5 i : - dY

¢ -= do \ho

(z6)
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By carrying out the indicated differentiation_ equation (iS) can be put
in the form

d8 i voUex(2el+ w8i
Ue2-e

(17)

This equation has the form of the conventional Karn_ momentum integral

with the exception of the enthalpy term @.

It should be noted that because of Stewartson's transformation a

simple relation exists between the parameter 8 i and the actual physi-
cal momentum thickness 8. This relation is

y+l

PO ae O__
8 = --- 8 i = 8 i [t

Pe ao \_e) (18)

Following a procedure with the energy equation similar to that for

the momentum equation results in

dE Uex VO (___y)

where the enthalpy-flux thickness is defined by

A UE= S_edY
(2o)

The method presented in this report uses exact solutions to the

boundary-layer equations including the energy equation. Since both

the skin-friction and heat-transfer parameters from the exact solutions

are correlated with a parameter which is evaluated from only the momen-

tum integral equation_ it will not be necessary to use equations (19)

and (20).

REDUCED BOUNDARY-LAYEREQUATIONS

At this stage_ the relation governing the boundary-layer develop-

ment is equation (17), subject to the boundary conditions (Si)x: 0 = O

or (8i)sp where the subscript sp indicates stagnation-point values.

The former condition on ei applies when the boundary layer is initiated
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without a stagnation point (such as in the case of a supersonic thin

(Uex andairfoil). The value of (8i)sp depends on the value of )sp

on the surface temperature. Values of 8sp are presented in
table I.

Before consideration of a solution which depends on a correlation
similar to that of Thwaites; it is expedient to transform the preceding
system of equations to a system involving dimensionless parameters. The
correlation concept will then be introduced and methods of solution
developed.

c_

_9

Parametric Form

The dimensionless parameters_ which are related to terms appearing

in equations (17) and (19), can be defined and evaluated from the follow-

ing expressions:

Shear parameter 3 or first-derivative parameter;

Z - _eSi _(TY)w= --ue8 __tw(_U)te_Y w (21)

Correlation number (related to pressure gradientl; or second-derivative

parameter;

Uex 2 8i2 _y2]w Uex82 {tw_Z{t--o_ (2"2)
n --_ v 8i = Ue i + Sw =0 vw _te] kte ]

Heat-transfer parameter; or third-derivative parameter 3

8i 6

r-- _ee \$Y5 4 n0 70 w

In the definitions (22) and (23); use is made of the following relations.

re spect ively:

(_) UeUex (i + Sw) (24)

w

which is obtained from equation (9), and
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UeUeX
w

(25)

which is obtained by differentiating equation (9) with respect to Y

and evaluating the resulting expression at Y = O.

2eiue
If equation (17) is multiplied by _ there results

v 0

G_
t_

I

<9

Ue d(OZ_)

v o dX

5i+6_

I%1

LVo ei - w
% J ]

where Hin c = 0i is the form factor for low-speed flow (Me -- 0).

Now, if the definitions (21) and (22) are inserted, equation (26)

becomes

-Ue _ ex

A similar procedure can be carried out with the energy equation,

although it is not necessary for the calculation method herein presented.

Correlation in Terms of n

If, in the definition of Hin e (eq.(26)), _ is set equal to zero,

equation (26) becomes Thwaites' momentum equation. If, in this case,

physically valid relations H(n) and Z(n) can be established, the equa-

tion can be integrated and the problem is solved. The assumption of the

form of the velocity profile serves this purpose, and the resultant pro-

cedure is the well-knownPohlhausen technique. (Kalikbznmn (ref. IS)

was the first to carry the same approach over to the case of the thermal

profile.) Thwaites used the more direct approach by determining whether

universal relations H(n) and Z(n) could possibly be established from

the well-known "exact" solutions of the boundary-layer problem. An ex-

amination of these solutions proved that for favorable pressure gradients

a single relation for each of these quantities could be established with

a fair degree of accuracy; but for adverse pressure gradients the rela-

tions departed from each other considerably, as indicated for Z(n) in

sketch (a) (taken from ref. gO). Since the correlation technique requires
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Incompressibleflow3 insulated surface

i

Favorable

-4_ pressure
gradient

0 i i
-.12 -.08 -.04

_pressure__

gradient
i

0
n

I I

Kartree (ref. 25)

Howarth (ref. 24)

Thwaites (ref. 20)-"
/IV Pohlhausen (method

!/ of ref. 14)

.04 .08 .IZ

(a)

oa

_O

the selection of a single relation between all boundary-layer quantities

regardless of the history of the development of the specific boundary

layer under consideration_ the assumption of a single relation for all

boundary layers is not exactly valid. Thwaites chose a relation for

_(n) that would match the Howarth solution (ref. Z4) at separation. The

Pohlhausen solution predicts separation to occur much later than any of

the other solutions in the sketch_ while the Hartree solution (ref. 25)

predicts separation to occur earlier than the Howarth solution. Stew-

artson (ref. 25) has indicated that under certain conditions Howarth's

solution would predict separation too late.

With the exception of the described differences in the relation

between boundary-layer quantities (due to the selection of the solutions

of ref. 12 for the evaluation of the correlated quantities), the method

of correlation to be presented herein will contain as special cases the

method of Thwaites for incompressible flow and the results of Rott and

Crabtree for compressible flow over insulated surfaces.

The concept of correlation is herein extended by the following major

assumption: For the compressible laminar boundary layer with heat trans-

fer across the surface_ the skin-friction and heat-transfer parameters

and r can be correlated only in terms of the parameters n and Sw_

derived from the exact solutions of reference 12.

It is thus implied that the solutions of reference 12 adequately

represent the general boundary layer, although they were derived for

Falkner-Skan type flow.

As in all first-order boundary-layer theories; the pressure distri-

bution (and consequently the external velocity distribution) is assumed
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c_
!

to be known. Then the utility of the correlation may be stated as fol-

lows: If n were known at a given point on the surface, @i (and hence

a) can immediately be obtained from equation (22). If Z(n) is a known

function for the specified wall temperature, the wall shear is immediately

obtainable from equation (21). Similarly, if r(n) is known, the heat

transfer can be found from equation (23).

If the postulate of correlation in terms of n

equation (27) becomes

- Ue_

and Sw be admitted,

(2s)

where

l (n,sw)= 2[n( inc + 2) + (29)

This is the fundamental equation of the present method. Its solution,

resulting in a determination of n(x), is the first stage in solving for

the boundary-layer characteristics. Then the function _(n,Sw) is used

to determine the wall shear, and the function r(n,Sw) is used to deter-
mine the heat transfer.

Evaluation of Correlation Parameters

The quantities 7,, n, and r defined in equations (21) to (23),

as evaluated from the solutions of reference 12_ are listed in table II.

An alternate parameter to r for the determination of the heat transfer

CfRe w

is the Reynolds analogy parameter, defined as N--q---'relating the heat

transfer to the skin friction. Because this (arbitrarily chosen) param-

eter is herein determined from solutions for a Prandtl number of l.Os

CCfRew_
it will be denoted _--_--u jpr=_I as it appears in table II.

to r by

CfRew_ 2Swn_
/ = _
Pr=l

4
The parameters Z and \_}Pr=l as functions of

are plotted against n in figures 1 and 2 3 respectively.

portions of the curves represent the solutions of reference 12. The

reversal of the curves for Sw = i.O is associated with the velocity

overshoot phenomenon discussed in reference 12.

It is related

n and Sw are

The solid
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When very strong favorable pressure gradients are maintained for

some distance along a surface_ it may become necessary to select a cor-

relation for a range of correlation numbers more negative than those

resulting from the calculations based on reference 12. This may be il-

lustrated by comparison of the extreme case of a Falkner-Skan type flow

having an infinitely favorable pressure gradient (_ = 2) with the case

of a real flow having a fixed favorable gradient following a run of zero

pressure gradient, in the extreme case it can be shown that the momentum

thickness is always zero_ but that the correlation number (proportional

to -Uexe2 ) is finite since Uex is infinite. With the real flow_ the

momentum thickness in the region of favorable pressure gradient can be

made as large as desired by increasing the length of run preceding the

favorable gradient. Thus_ the value of n may become as negative as

desired. Under such circumstances extrapolated correlation functions

would have to be used. The broken portions of the curves of figures i_

2_ and 6 represent an extrapolation that is assumed to be qualitatively

correct and quantitatively reasonable.

c_

_O

METHOD OF SOLUTION

The solution of equation (58) obviously depends on a knowledge of

the term N(n,Sw). This quantity w_s evaluated from equation (29) and

the associated formulas for _ n, and Hinc. The results are shown in

figure 5. It is to be noted that the curve for Sw = O is nearly a

straight line; and for all negative values of Sw the curves depart

only slightly from this condition except in the range near separation

where the curves become double-valued. For Sw > 0 (hot wall) the curve

is essentially straight except in the region of strong favorable gradients.

The examination of these curves and of equation (28) suggests two

methods of determining the correlation number n. The first method is

that of solving equation (28) by numerical integration. This method is

assumed applicable to either variable or constant wall temperature. The

necessary numerical procedure_ however, is tedious_ since it involves

integration of a first-order nonlinear nonhomogeneous ordinary differ-

ential equation. Because a simpler method is available when the surface

is isothermal_ no numerical integration procedure will be presented here

in detail. However_ some _itegration relations are stated in appendix B.

The second method_ applicable when the surface temperature is con-

stant (or_ presumably 3 nearly constant), will be termed the "linear

method." This method uses the nearly linear shape of the curves of N

against n for constant Sw. It directly corresponds to the procedure

of Thwaites for incompressible flow and to that of Rott and Crabtree for

compressible flow over insulated surfaces. The curve of N against n

for a given Sw is assumed represented by

N = A + Bn (51)
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c_
DO

If equation (51) is inserted in equation (28), a simple linear

first-order equation results, which has for its solution

-B _X B-I
n = AU e ,/ U e dX

- Uex
-0

(32)

If equation (32) is transformed to physical quantities by using

Stewartson's transformation; there results for two-dimensional flow

x

n ;0to
P' 7 \ to] e \to] d(_)

(33)

where
_-i

K = 2-_-_7' L is any fixed length; and the dimensionless pres-

sure gradient P' is given by

dP e dP e

P'= =
PeUe 2 rPeMe2

The left member of equation (53) has been arranged in a form convenient

for later use.

The determination of the coefficients A and B is as follows:

If the straight line (31) is chosen to pass through the correct value

of N at zero pressure gradient (n = 0); then A = 0.44 independent

of S . In this case_ only h is affected by the presence of heat
transfer. Figure 4 shows the values of B(Sw) for the following choices

of matching conditions:

(i) The line (31) goes through the point corresponding to N = 0

(ue = O) in order to match the conditions at a stagnation point. Thus 3

for two-dimensional flow (N = 0) 3 B = - 0.44/nsp.

(2) The line (31) coincides with the tangent to the N(n) lines at

n = 0 (small pressure gradients).

(3) The line (31) is selected to give good over-all agreement for

unfavorable pressure gradients.

If a better match with the curves of figure 5 is desired in calcu-

lating n for certain ranges of pressure gradient 3 a tangent line to

the curve of N against n may be chosen at a desired value of n.
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For instance, in considering the flow in the vicinity of a two-dimensional
stagnation point with Sw = -0.8, the tangent line through N = O has
the coefficients A = 0.572, B = 2.53. The value of B is quite sensi-
tive to the matching assumption, especially in the region Sw > 0 (fig.
4). However, the final value of n(x) is somewhatinsensitive to the
value of B, since the terms involving B in equation (53) appear both
inside and outside the integral in a compensating manner. The accuracy
of the method decreases, of course, in regions where the plots of fig-
ure 3 have large curvature.

The calculation procedure is as follows: Values of A and B are
chosen for use in equation (35) either from figure 4 or from tangent-
line considerations. The integration is then performed by using a suit-
able integration rule and a proper step size. It is recommendedthat
the step size chosen be as small as practicable in order to obtain re-
sults which are reasonably smooth. In somecases (e.g., near the
boundary-layer origin) it maybe advisable to perform the integration
by obtaining Taylor's series expansions of the integrand in the variable
(x/L). Then the integration can be carried out in closed form_ corre-
sponding effectively to zero step size.

There are two possible starting conditions in a boundary-layer cal-
culation: (i) that of a sharp edge, that is, e = 0, n = O; or (2) the
stagnation point, where Ue = ue = 0. In using the linear method_the
starting conditions are automatically satisfied whenthe chosen line
(31) goes through the starting point. Thus, if matching condition (i)
is used_ both possible starting conditions can be satisfied_since the
corresponding line (31) passes through the curve from the exact solu-
tions at both n = 0 (N = 0.44) and, for the two-dimensional flow, at
N = 0 (nsp = -0.44/B). Values of n for stagnation-point flow taken
from figure 3 are shownin figure 5.

The corresponding relations and procedure for axially symmetric
flow based on Mangler's transformation (ref. Z6) are presented in ap-
pendix C.

It is sometimeshelpful to have an analytical expression for the
initial variation of correlation numberas a check on the numerical cal-
culations. The initial variation of n with x for the various start-

ing conditions, as represented by the derivative (_C.l , is discussed
x=O

in appendix D.

oa
_9
_D
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BOUNDARY-LAXER CHARACTERISTICS

Once the correlation number n is determined as a function of x,

it is possible to obtain Z and \--_---/Pr=-i from figures i and 2.

Then_ the local skin-friction coefficient and heat transfer are easily

calculated from the following relations 3 which apply to both two-

dimensional and axially symmetric flows : x ( )_t
_w UeX _ w

From the definitions Cf = i 2_ Rew = _ Nu = ta_wvw - t , and
PwUe w

from equations (Bl) and (22), it follows that

I x dUe

Ue (3S)
Cf R_w = 2B - te

nto

or that (the equivalent form which may be more convenient)

x p, to
Cf_ZR_ w = 2_ n (36)

Once Cf is determined, the heat transfer may be calculated from
curves of the Reynolds analogy parameter against correlation number of

figure 2, by using the relation

_ cfRd  w (37)

\-_--u/pr=_l

In utilizing equations (36) and (57), it is useful to have the

initial values of the parameters. These values are listed in table I.

It may be noted that_ at a stagnation point 3 equation (56) reduces to

cfRV Cw= (38)
_-nsp

The calculations thus far have been for Pr = 1.0. The effect of

Prandtl number on skin friction is small and is therefore usually neg-

lected. It can be seen from table I that_ for stagnation-point flow_

the maximum difference in the quantity CfR_ w between solutions
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for Pr = 1.0 and Pr = 0.7 is about 7 percent. With regard to heat
transferj Tifford and Chu (ref. 27) have found3 from solutions with con-
stant fluid properties 3 that the effect of Prandtl number on heat trans-

fer can be accounted for by multiplying (----/_ by (Pr) _. Values

r=l

of _ suggested in reference 27 are as follows: For small pressure

gradients, _ : i/3; for large adverse pressure gradients, _ : 1/4; and

for extreme favorable gradients, _ = 1/2. Squire (ref. 28) has indicated

that _ = 0.4 is adequate for sta_ation-point flows. Recently obtained

solutions (as yet unreported) of equations (16) of reference 12 for

= i, Pr = 0.7, and M e _ ® show that this type of correction may be

adequate for all compressible boundary-layer calculations.

It should be noted that 3 in the definition of Nusselt number_ the

temperature difference in the denominator was assumed to be (ta3 w - tw)-

Since for Pr = i the recove_j temperature is to3 the present calcu-

lations (based on those of ref. 12) can give no indication of the adia-

batic wall temperature for Pr _ i. For a first approximation 3 it may

be reasonable__ / to calculate ta, w by using a temperature recovery factor

of (Pr) li_. This is the well-known expression for recovery factor for

the case of high-speed flow with zero pressure gradient. The accuracy

of its application to flows with large pressure gradients is not yet

established.

The physical momentum thickness is determined from

I X

e te n

-tw t--7
P' te

(59)

The displacement thickness 8 _ may be calculated by using the fol-

lowing simple expression for the ratio of displacement thickness to mo-

mentum thickness :

-y =  inc + - (4o)

In reference 223 this expression was suggested for use in calculating

flows over insulated surfaces with Pr = i. For noninsulated surfaces 3

the dependence of Hin c upon wall temperature is presented in figure 6.

With large amounts of cooling in favorable pressure gradient flows, it

O4
_O
_O
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is seen that negative form factors (here corresponding to negative dis-

placement thicknesses) result. This occurs because the surface cooling

produces an increase in density near the wall_ so that there is more

mass flow per unit flow area within the boundary layer than in the

external flow.

EXAMPLES

An important test of the method developed is the comparison of the

final results for practical problems with the findings of other theories

or with experimental results.

!

o

I. Supersonic Surfaces

The linear method for detemining the correlation number n is

applied to the calculation of skin friction and heat transfer for the

two supersonic surfaces at Mach number 3.0 calculated in reference 6.

These surfaces are shown in sketch (b).

.05 - Favorable pressure

gradient _/////I

Z/1/1/Ill//H//////////////
0 1

xlL

.05 - Adverse pressure

gradient ///1

_. -F171111112,,,,,,
0 I

x/L

(b)

A comparison is made 3 in the following tabke_ between the results

obtained by using the linear method and those obtained by using Low's

perturbation method with Pr = 0.7Z (ref. 6). The comparison is made

for a hot wall_ an insulated wallj, and a cold wall at x/L = l (see

sketch(b)).A valueof _ of 1/3was_ed int_e_eoaloulations.
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Gradient

Favorable

Adverse

!Heat-transfer

condition

Cold wall

(Sw-- -0.9 )

Insulated

wall

Hot wall

(Sw=O. 61 )

Cold wall

(Sw---o.9)
Insulated

wall

Hot wall

(Sw=0.43)

(of
Linear

method_
Pr = i

0.680

.877

i .03i

0.645

LOW (ref. 6),

Pr = 0.7Z

O. 679

.876

i .048

0.661

Linear

method,

corrected

for Pr

O. 27O

.284

O. 320

•406

•256

.475 .....

.586 .274

Lo_ r

(ref. 6 ),
Pr = 0.72

O.ZTI

•318

0. 307

.277

A comparison of values indicates agreement of skin friction within

2 percent in the case of a favorable pressure gradient. For the adverse

pressure gradient cases, reasonable agreement is obtained for the cold

wall_ although for the insulated and hot walls, a large difference is

obtained. This difference is due essentially to the fact that_ in the

case of an adverse pressure gradient, the solutions of Low (ref. 6),

which resemble the series-type solution of Howarth (ref. Z4), depart

from Falkner-Skan type solutions such as that of Hartree (ref. 25)

(e.g., sketch (a)). Some of the difference in the preceding table is

a Prandtl number effect 9 however_ for the heated surface with an adverse

pressure gradient, the flow is closer to separation than appears per-

missible for a theory based on small pressure gradients such as that of

reference 69 therefore_ for this case the present calculation may be

more reliable. Good agreement is also obtained for heat transfer except

for the case of the heated surface with favorable pressure gradient.

Some of that difference might be a Prandtl number effect.

II. Axially Symmetric Convergent-Divergent Rocket Nozzle

The second example, that of a rocket nozzle; is one involving both

large pressure gradients and_neat transfer. The nozzle chosen is illus-

trated in figure 7. It has a Z5° hall-angle convergent section and a

15 ° half-angle divergent section• The combustion-chamber stagnation
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H_

JM
o

bo
!

o

pressure is assumed to be SO0 pounds per square inch absolute_ the stag-

nation temperature is taken as 4000 ° R_ and the Prandtl number is assumed

to be 0.78. The nozzle wall is assumed cooled to a uniform temperature

of 800 ° R_ which corresponds to Sw = -0.8. For the assumed S-inch

throat diameter_ the rocket has a nominal thrust of 5550 pounds for

y = 1.3. Local static conditions along the nozzle wall were obtained

using one-dimensional flow relations.

The calculation was performed by the linear method with A = 0.372

and B = _.$3. In order to eliminate the effect of step size in the in-

itial portion of the integration_ a series expansion of the integrand was

used for 0 _ (x/L) _ 0.5. For (x/L) _ 0.S, the step size taken was 0.l.

The resulting variation of n in the nozzle is also shown in figure 7.

It is seen that_ in a portion of the nozzle including the throat

(1.2 < (x/D) < 3.5), values of n are obtained which are more negative
than those obtainable from the exact solutions. Thus_ in order to cal-

culate skin friction_ heat transfer_ and displacement thickness from

1.2 _ (x/D) < 3.5, it is necessary to use the extrapolated portions of

the curves of figures i and 2 for Sw = -0.8. No extrapolation is
needed to obtain momentum thickness since the momentum thickness is re-

lated to n through equation (39).

The calculated local heat-transfer rates as well as displacement

and momentum thickness are shown in figure 8. It is seen that large

rates of cooling are required in the neighborhood of the stagnation

point and the nozzle throat. If the cooling were to become insufficient_

these seem to be the most likely locations of failure. The required

local cooling rate to maintain constant wall temperature decreases

sharply beyond the throat of the nozzle.

In the absence of more appropriate information_ it has been cus-

tomary in recent years to use flat-plate heat-transfer relations in

estimating heat transfer in a nozzle. The use of such a relation in

the current problem (Nu/_ = 0.305 for Pr = 0.78) yields values

indicated by the dashed line in figure 8. It is seen that for this

problem the flat-plate relation seriously underestimates the amount of

cooling required over a large part of the nozzle. This illustrates the

importance of considering the effects of pressure gradient on heat

transfer.

The momentum thickness is seen to reach a minimum value at the

nozzle throat. The displacement thickness is a small positive quantity
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at the stagnation point but is negative for most of the convergent sec-
tion as well as in the vicinity of the throat. 5

The use of different values of A and B in performing the numer-
ical integration would have approximately the following effect: With
the values A = 0.44 and B = 5.0 (from fig. 4), the momentumthick-
ness would be about i0 percent smaller in the vicinity of the throat
than the values in figure 7 and would be within 5 percent of the pre-
sented values over the rest of the nozzle. With A = 0.355 and
B = 2.343 the momentumthickness at the throat would be about 6 percent
larger than the value presented. The effects of varying A and B on
skin friction and heat transfer would be less than 3 percent at the
throat.

_W

_O

CONCLUDING REMARKS

The application of Stewartson's transformation to the compressible

laminar boundary-layer equations with heat transfer yielded a simple

first-order system of ordinary differential equations 3 the first of

which is very similar to the K_rm_ momentum integral. Dimensionless

shear and heat-transfer parameters were defined. The assumption of

correlation of these parameters in terms of a momentum parameter resulted

in a complete system of relations for calculating skin friction and heat

transfer. Knowledge of velocity or temperature profiles is not neces-

sary in using this calculation method. Procedures for the calculation

of the longitudinal distribution of correlation number are presented_

which include as special cases the method of Thwaites and that of Rott

and Crabtree. The dimensionless parameters introduced herein were

evaluated from the exact solutions of reference 12.

Calculations of an example involving small pressure gradients show

that the method is reliable when compared with the perturbation method

of reference 6 over the same range of Mach number_ pressure gradient_

and heat transfer.

The method is also applied to the calculation of heat transfer and

displacement thickness in a highly cooled_ convergent-divergent 3 axially

symmetric rocket nozzle. The results of this calculation show that high

rates of heat transfer are obtained at the initial stagnation point and

3This unusual result produces the interesting possibility that,

for a rocket nozzle with cooled walls and viscid flow, amass discharge

coefficient based on throat area_ generally assumed to be less than

unity because of boundary-layer "blockage" at the throat_ may actually

exceed i. A distinction exists between this phenomenon and that of

negative momentum thickness (refs. i_ I0, and 12) associated with

"velocity overshoot."
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at the throat of the nozzle. Also indicated are negative displacement
thicknesses in the convergent portion of the nozzle_ these occur be-
cause of the high density within the lower portions of the cooled
boundary layer.

(A
C_
_O

Lewis Flight Propulsion Laboratory

National Advisory Committee for Aeronautics

Cleveland_ Ohio_ February i_ 1955
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APPENDIX A

A

a

B

SYMBOLS

The following symbols are used in this report:

constant from N = A + Bn

sonic velocity

constant from N = A + Bn

_o

Cf

Cp

D

E

local skin-friction coefficient, Cf -

specific heat at constant pressure

nozzle-throat diameter

_I_ W

2

PwUe

_0 A Uenthalpy-flux thickness, E = S _ee dY

H

Hinc

h

K

k

k
su

L

A

stagnation-enthalpy-defect thickness, 8 = /

J0
form factor, H = 6*/e

physical form factor for

enthalpy

thermal conductivity

+
M e - O, Hin c - ei

Sutherland's constant

arbitrary length

dimensionless shear parameter, _ =_ _U

Ue w

dY
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DO

M

m

N

N_

n

p T

Pr

P

q

R

Math number

exponent from Falkner-Skan external velocity distribution

U e = CXm

momentum parameter, N = 21n(Hinc + 2) + _1

Nusselt number, Nu -
t - t
a_w w

2

Uex ei

correlation number, n = v
0

dimensionless pressure gradient, P' -

Prandtl number# Pr WCp
k

static pressure

ap e
L_

dx

2

_PeMe

local heat-transfer rate, Btu/(sq ft)(sec)

radius of axially symmetric body

l_e
w

r

S

t

t
a,_g

Reynolds number_ Rew -
PwUe X

_w

)]heat-transfer parameter, r = n0

h
s

enthalpy function, S - _- - 1
0

static temperature

adiabatic wall temperature
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U

U

V

v

X

X

Y

CL

),

5*

e

k

v

P

'I[

a o

transformed longitudinal velocity, U = u ae = #y

longitudinal velocity component

transformed normal velocity, V = - @X

normal velocity component

transformed coordinate along surface, X =
Po ae

k----dx

PO ao

coordinate along surface

transformed normal coordinate, Y =
_0 y Pae

-- dy

Poao

normal coordinate

exponent of Prandtl number in Reynolds analogy parameter

2m
pressure gradient parameter, _ - m + i

ratio of specific heats

displacement thickness

momentum thickness

dynamic viscosity

kinematic viscosity, _ = _/P

mass density

shear stress, x = _ _yy

c_
_O

stream function, eq. (6)
m
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O_
t_

Subscripts :

e

i

s

sp

W

0

I

local flow outside boundary layer (external)

associated transformed quantity

local stagnation value

stagnation point

wall or surface value

free-stream stagnation value

initial value

!

o
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APPENDIX B

NUMERICAL INTEGRATION METHOD

Method. - The most direct method of solving equation (28) is by

numerical integration, using the calculated curves of N(n,Sw) for deter-

ruination of the right member. This method is assumed applicable to

either variable or constant Sw.

An integration procedure may be simply indicated by direct Inte-

gration of equation (28). The resultant integral equation can be

written :

For two-dimensional flow,

x n x N(n)d (Bl)
n = I - eX U e

1

For an axially symmetric closed body, through Mangler's transformation

(ref. 26),

Uex f0 X

n = - -- NR---_2 dX (B2)

R 2 U e

Since the integrands contain N(n)_ which is unknown at this polnt_

no simple evaluation is possible. In factj these equations are actually

only a condensed notation of the procedure to be followed. The inte-

gration must be carried out piecemeal_ alternating with determination

of the left member of the equation and iterating for accuracy.

The necessity of working with the transformed coordinates can be

eliminated by considering the Stewartson transformation from U e to

For example, in physical coordinates equation (B2) becomes

U e •

C_

_O

n ae NR 2 d

P--_ =R2--te (M a0 P_-0e ae

(B2a)
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o
c_

!

c)

where L is any fixed length, and the dimensionless pressure gradient

P' is given by

p!

dPe dPe
L-- L--

2 2

PeUe TPeM e

If the isentropic relation p/p7 = constant is used in equations

(31) and (32) and if the Stewartson transformation is applied, there

results:

For two-dimensional flow,

n

to
p' __

te

-M
o

to K N n I
(B4)

For an axially symmetric fl0w (closed body),

X

n Me #h_ K __ NR2 d(L) (B5)P' tetO- R2 kte/ Me(t_ K

where K =_.

Initial values. - When the numerical integration method is used,

certain considerations are necessary in order to start the solution

properly. There are two possible starting conditions: (1) sharp edge

or pointed body, where e = 0 and n = 0, and (2) stagnation point,

where Ue = ue = 0.

In the case of a boundary layer starting from a stagnation point,

the initial value n I of n is determined from the condition Ue = 0_

U e = constant in equation (28). For two-dimensional stagnation-point
X

flow, the Hartree pressure gradient parameter 6 is equal to 1.0.
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Since, for the Falkner-Skan type flow considered, N = 2(_-I)
n, it is

seen that N = 0 at a two-dimensional stagnation point. This fixes

n at the values shown in figure 5, which were obtained from figure 3.

For axially symmetric stagnation-point flow over a closed body, _ = 1/2

(ref. 29), so that N I = -2n I. The values of n I for axially symmetric

stagnation-polnt flow over a closed body as obtained from figure 3 are

also shown in figure 5. For the stagnation-point flow over the blunt

lip of an open axially symmetric body, nsp can be shown to have the
two-dimensional value.

_W
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APPENDIX C

LINEAR METHOD FOR AXIALLY S_IC FLOW

For axially symmetric flows, the following equation_ which is

equivalent to equation (33), is obtained by application of the trans-

formation of Mangler (ref. 26):

X

n fo
1:"_---- kto] RR _to] Me 1-B d(L)

O

(Cl)

where R = R(x) is the radius of the body at station x, K = _, and

dP e
L_

dx
pt -

2

7PeM e

In evaluating the coefficients A and B of the straight line

N : A + Bn (31)

A may be chosen as 0.44 so that the line (31) passes through the cor-

rect value of N at n = 0. The choice of B may be made so that the

line (31) goes through the point where N = -2n in order to match the

conditions at an axially symmetric stagnation point. Thus_ B = __0.44 + 2_.
\nsp ]

For achieving better agreement with the curves of figure 3 in certain

ranges of pressure gradient_ a tangent line to the curve of N against n

may be chosen as was indicated for two-dimensional flow.

The three possible starting conditions are: (i) For a pointed

body, e = 0_ n = 0. (2) For a stagnation point on a closed body,

Ue = u e = 0 so that N = -2n. Values of nsp for this axially

symmetric stagnation point are shown in figure 5 and indicated in

table II for _ = 1/2. (3) For a stagnation point on the blunt llp of an

open axially symmetric body# it can be shown using the axially symmetric

form of equation (28) that N = 0 so that nsp is that for two-
dimensional flow.
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APPENDIXD

INITIAL VARIATIONOFCORRELATIONNUMBER

It is sometimeshelpful to have an analytical expression for the
initial variation of correlation numberas a check on the numerical

following expressions for dI_jl are determinedcalculations. The
x=0

from equation (28).
o,I
_D

Sharp edge:

Two-Dimensional Flow

r_n_:o_ Ox
\ax/

X=0 Ue

Stagnation point (blunt body):

dn nsp _Uexx_

(_x)_:o:_+(_)_,,_oxj_

(Dl)

(D2)

Axially Symmetric Flow

For axially symmetric flow the initial derivatives must be evaluated

from the following equation:

Uo d nR_T3----_ = N(n,Sw) (D3)
R 2 dX VOx)

Closed Body

Pointed nose :

_x) = _ 0.147 Uex (to)x:o uV
(D4)
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O_
O_

Stagnation point (blunt nose):

dn ns_ EfUexx__ J

Open Body

Sharp lip :

C0)dn = - 0.44 uex

Stagnation point (blunt lip) :
r

dn ns_ IfUexx_

(_7)x:o:l 'dN' I_e ]

+ \ /L'_'sp" x sp

(DS)

(De)

(D7)
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TABLE I. - INITIAL VALUES OF PARAMETERS

(a) Stagnation-point flow

5 w cf

Pr = I ]Pr =0.7(s)

-i.0 Cl.sO ].21

-.8 ci.56 1.49

-.4 c2.04 2.00

0 2.46 2.46

i .0 3.47 5.54

-i.0 1.64 1.56

-.8 i .85 1.79

-.4 2.25 2.22

0 2 .{_2 2.5_2

1.0 3.49 5.55

Pr=l

Nu/R4 <

IPr(_)0.7 Pr = 0.7(a)

. PC5 ftA

Pr=l

, Hsp,
8sP _ Vw

Pr = 1 Pr= 1

Two-dimensional (_ = i)

c0.506 0.458
c

.522 .452
c

.546 .474

.570 .495

.615 .533

0.700

.717

.759

.763

.809

0.436

.451

.475

.495

.557

c-0.170

c .012

c .345

.648

1.586

Axially symmetric (_ = i/2)

0.607 0.607 -0.0771

.617 .621 .0576

.659 .645 .518

.662 .662 .569

.701 .708 1.165

c0.400 c-0.425

c .384 c .031

c .338 c 1.021

.292 2.218

.177 7.880

0.300 -0.257

.289 .199

.269 1.185

.248 2.298

.194 5.012

aThese values are obtained when eqs. (16) of ref. 12 are solved for Pr = 0.7, M e

bThese values are obtained by multiplying the results for Dr = 1 by (0.7) 0"4.

('Interpolated values from solutior]s of ref. 12.

(b) Sharp edge or pointed body

Pr = 1 Pr =0.7(a)

Tw _-d imensi.onal

0._:4 I0.352 10.795

Axially symmetric

1.18o Io.575Io.51o

8These values are obtained

by multiplying the

results for Dr = 1 by

(0.7) 1/3

= O.

C_
O_
_a
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TABLE II. - SUMMARY OF HEAT-TRANSFER AND WALL-SKEAR PARAMETERS

r-4
C4

O
4 ¸

CO
!

[D

Sw

-i.0

-0.8

-0.4

1.0

-0.526

- •5657

- .3884

- .360

- .50

- .14

0

.50

2.00

-0.3088

- .525

- .3285

-. 5285

- .525

- .30

- .14

0

.50

1.50

2. O0

-0.246

- .2483

- .24

- .20

0

.50

2.00

-0 •1988

-. 16

0

.50

i .00

i .60

2.00

-0.1295

- .I0

0

.50

.50

1.00

1.50

2.00

0.1335

.1579

.1591

.1257

.0907

.0345

0

- •0897

- .2958

0.i_15

.1304

.1298

.1260

.1212

•i017

•0555

0

-. 0857

- .2008

- .2522

0.0899

.0894

.0826

.0615

0

- .0722

- .1735

0.0681

.0487

0

-. 0602

- .0829

- .1002

-•1064

0.0417

.0294

0

-.OZZ4

-.0575

-.0512

-•0186

-.0089

1 N r

0 1.0845 0.0212

.5929 1.1804 .0507

.0896 1.1382 .0359

.1446 .9504 .0297

.1749 .7858 .0212

.2065 .5590 .00774

.220 .440 0

.2459 .1795 -.0188

.2829 -.2955 -.0586

0 1.0505 0.0172

• 0512 1.0606 .0210

.0436 1.0499 .0216

• 0681 1.0185 .0220

•0827 .9885 .0216

•1214 .882 .0187

.1955 .5781 .00642

•220 .44 0
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